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Abstract

I estimate local economic and environmental effects of artisanal and

small-scale gold mining (ASM) in Ghana. For that purpose I use a

novel dataset on the geolocation of artisanal gold mines based on ma-

chine learning techniques and satellite imagery. ASM is an informal,

low-tech, but highly labour-intensive form of resource extraction that

is typically associated with environmental and health damages, social

problems and poverty. In contrast to common perception, I find that

one additional artisanal mine increases nearby household per-capita in-

come by 0.2 percent, which is driven by non-agricultural income sources.

Other indicators of economic development point in the same direction:

In artisanal mining areas more households have access to electricity,

more individuals are literate and fewer people work in agriculture. On

the other hand, conventional large-scale mining does not show any local

economic impacts. From an environmental perspective, both small- and

large-scale mining contribute to forest cover loss. In a context where

reliable data is scarce, the evidence shown here thus provides a more

nuanced view on local effects of artisanal mining.
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1 Introduction

Many developing countries with high poverty rates are also blessed with abun-

dant mineral resources. This mineral wealth is typically extracted through

large-scale mines, which are highly capital intensive and thus provide very

few employment opportunities for local populations. In contrast, over the last

ten years much smaller mining operations have become increasingly common,

particularly in the gold mining sectors of Ghana, Tanzania, Indonesia and

Latin America. While these artisanal or small-scale mining operations employ

millions of workers, they are also linked to environmental damages, health

hazards, social costs, poverty and even political tensions (times (2017) and

National Geographic (2017). Because most artisanal mines in Ghana operate

without a license, data and thereby empirical evidence on this industry is ex-

tremely scarce (Cust and Poelhekke (2015) and World Bank (2015)).

I estimate local economic effects of small-scale mining on nearby households

in Ghana by making use of novel data on the geolocation of these mining op-

erations. This data is generated in collaboration with Microsoft by training a

machine learning model to detect artisanal mining sites from satellite images.

As a result I am able to map the distribution of a large share of visible arti-

sanal mines in Ghana. These mines are then connected with data on household

outcomes and forest cover loss.

Using household survey data from 1998/99, 2005/06 and 2012/13, I find that

per-capita income is 0.2 percent higher for each additional small-scale mine

within 10 kilometres of households. This result is robust to controlling for

large-scale gold production, a number of individual and household controls

and unobserved heterogeneity at the district level. The income gain is driving

by higher non-agricultural incomes in small-scale mining areas. In contrast,

large-scale mining, often taking place near artisanal mining, does not affect

income or expenditure of nearby households. This result thereby supports the

enclave hypothesis of large-scale industrial mining.

These positive economic effects do however come at the cost of environmental

degradation. Using high-resolution forest cover loss data, I find that deforesta-

tion is almost 42 percent higher in areas with many small-scale mines than in

those without. This seems to be caused by both small- and large-scale mining.

This paper is structured as follows. Chapter 2 provides institutional back-

ground on artisanal mining in Ghana. Chapter 3 introduces the different data

sources used for the empirical analysis, which is carried out in chapter 4. Chap-

ter 5 concludes.
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2 Background: Artisanal mining in Ghana

Mining is a major industry in Ghana, contributing 8 percent to GDP and 16

percent to fiscal revenue. Gold accounts for 97 percent of this revenue and

makes up 23 percent of all exports (US Geological Service (2014), GHEITI

(2015), Simoes and Hidalgo (2011)). These macro figures relate to both large-

scale mining (LSM) and artisanal and small-scale mining (ASM). It is im-

portant to distinguish between these two industries, as they differ greatly in

organisation, technology and labour used. Especially local economic outcomes

are therefore likely to be different. Large-scale mining is mostly operated by

large international mining companies, with the Ghanaian government required

to hold at least 10 percent of shares (GHEITI, 2015). It is highly capital-

intensive, therefore generating only very few local employment opportunities

(Aryeetey et al., 2007). As of 2014 approximately 12,300 workers, out of a

labour force of 11 million people in Ghana, are employed in the large-scale

mining sector (US Geological Service, 2014).

Local effects of large-scale mining, using the GPS location and production

of large industrial mines, have been found in terms of decreased agricultural

productivity (Aragón and Rud, 2016), higher local corruption (Knutsen et al.,

2017) and more conflicts (Berman et al., 2017).1 Some studies also use remote

sensing to observe environmental damages in the form of forest loss around

large mines (Schueler et al., 2011). The seemingly negligible local economic

impact of large-scale mining is in sharp contrast to the artisanal and small-

scale mining sector, which in Ghana alone is estimated to employ 1.1 million

workers directly (Hilson and McQuilken, 2014).

Artisanal gold mining in Ghana traces back to the 15th century, when it was

known as the Gold Coast under Portuguese and later British colonial rule

(Crawford et al., 2015). Looking at more recent data, figure 1 shows that un-

til roughly 2006, most of Ghana’s gold production originated from large-scale

producers (blue bars). It was only after 2006 that small-scale mining started

to play a major role in Ghana’s overall gold production, accounting for 36 per-

cent in 2014 (green bars). This is consistent with the increased mechanisation

of ASM that is reported for this time, partly caused by an influx of foreign

1For a recent survey of local effects of (large-scale) mineral extraction see Cust and
Poelhekke (2015) and Chuhan-Pole et al. (2017).
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capital, technology and labour (Mantey et al. (2016), Crawford et al. (2015)).

The other common explanation for the increase in ASM activity is the hike

of the gold price, which can also be observed in figure 1 (black line). In ad-

dition to this, the first major government crackdown on illegal ASM activity

was conducted in summer 2013, which slowed down its expansion afterwards

(Crawford et al., 2015). This observation on the timing of ASM is important

to the following analysis because it enables me to use ASM locations from

2014, the only date available for satellite images, in connection with household

data from 2012/13 (based on the Ghana Living Standards Survey). I thereby

assume that the ASM locations detected for 2014 are also valid for 2012/13.

The second identification assumption comes from the observation that artisanal

mining was of negligible economic importance until roughly 2006. This allows

me to make a comparison over time, assuming zero ASM activity for all survey

observations until 2006. This approach will be further explained in section 4.2.

Figure 1: Gold production, area and price in Ghana

There is a sharp contrast between how ASM is perceived both in public and in

the academic literature. Public perception is largely driven by reports on envi-

ronmental damages, such as mercury contamination of soil and water (Mantey

et al. (2016), Van Straaten (2000)) and deforestation (Hirons (2011), Rahm

et al. (2015) and Schueler et al. (2011)), as well as health hazards and nu-

merous social problems, like child labour, prostitution, drug abuse, corruption

and violence (Knutsen et al., 2017). As a result, ASM operations are often
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blamed to cause extreme poverty (Mantey et al. (2016), Hilson and McQuilken

(2014)). Opponents of this negative characterisation argue that many of the

detrimental outcomes result from the illegality of most ASM operations but are

not inherent to ASM itself. Thereby, formalisation of ASM and harmonisation

with large-scale activities would mitigate many negative effects. Proponents of

ASM claim that instead of causing poverty ASM has developed into a major

industry in many developing countries, accounting for more than one million

jobs in Ghana directly, and over four million indirectly through downstream

industries (Hilson, 2016).

This article adds to the discussion by providing evidence on ASM’s local eco-

nomic and environmental effects for a large sample. The major obstacle for

this analysis is that due to its illegality, data on ASM is extremely scarce. For

the relatively few legal ASM operations some licensing data is available (see

section 3.3). However, this data cannot be exactly geolocated to measure local

effects and is further substantially underrepresenting the size of illegal ASM

activities, which are assumed to make up most of Ghana’s small-scale mining

(Hilson and McQuilken, 2014). Many studies have looked at interview and

case-study evidence to measure the effects of ASM, but lack consistent mea-

sures and the scope to draw inferences for a large scale (Fisher et al. (2009),

Kitula (2006)). Only recently credible attempts that employ low-level ASM

data have been made. Asner et al. (2013) identify forest loss through satellite

images that is caused by both industrial and artisanal mining in the Amazon

region. Bazillier and Girard (2017) combine official ASM registers and geolog-

ical data to infer the location of small mines and infer the effect of small-scale

mining. They find positive effects of ASM on the wealth of nearby households.

The most similar attempt to this article is conducted by Saavedra and Romero

(2017). They generate a panel of ASM locations in Colombia using satellite

images and machine learning techniques to show how a reform on tax revenue

distribution from local to central governments increases illegal mining activity.
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3 Data

3.1 Artisanal mining data

The main small-scale mining data for this article is generated by Microsoft in a

joint project with Royal Holloway, University of London. A machine learning

model based on a convolutional neural network is trained to identify mines

on satellite images from Ghana.2 These identified mines can then be mapped

against other georeferenced data to draw inferences about the effects of ASM.

The latest release of Bing Maps for Ghana from 2014 is used for this project.

Satellite images for previous years are not available from Bing Maps, so it is

unfortunately impossible to construct a panel that way.

One of the most common forms of ASM, alluvial or surface mining, can be

spotted by the human eye on high-resolution satellite images (see figure 2).

The distinctive visual features of surface ASM sites are described in Mantey

et al. (2016), Rahm et al. (2015) and Unitar (2016). These are water pits of

unnatural shape, often found next to rivers, which have changed to a light-

brown colour. Other forms of artisanal mining not covered in this analysis

include underground mining, mill-house operation and pilfering mining. Note

that there are many different forms of surface mining, which cannot be distin-

guished by the approach in this article.

Starting from known ASM centres such as Dunkwa-on-Offin and Obuasi, satel-

lite images are then labelled as either mine, no mine, or cloud by trained users.

The validity of this labelling process is verified afterwards by comparing the

results to a smaller sample of georeferenced ASM data by Mantey et al. (2016).

Most of the Southern half of Ghana is included in this approach. Other regions

are excluded because of high computational costs and because we can not

visually identify any small-scale surface mining sites in the Northern half. This

results in roughly four million satellite image tiles at a resolution of 0.6 metres

per pixel, with each tile spanning 152.9 by 152.9 metres (equalling 0.02 square

kilometres of surface). The area covered by the detection model is depicted in

figure 3. The initial training data set consisted of roughly 4,000 images with

1,000 labelled as mine, 2,000 as not mine and another 1,000 as cloud. The

2A More technical background on the data generation methodology can be found
soon at https://www.microsoft.com/en-us/research/academic-program/microsoft-azure-for-
research/. The image recognition model is designed in Python using Keras with a
Tensorflow model. For an intuitive introduction on convolutional neural networks see
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/, for more details see
https://www.deeplearning.ai/. For Keras see https://keras.io/.
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Figure 2: Detected ASM sites in Ghana

training set is then divided into 70 percent model training, 20 percent testing

and 10 percent validation. Because this set overpredicted mines the training

set was later increased to 1,330 mine, 27,750 not mine and 1,020 cloud labels to

improve the accuracy of predicting mines. Figure 4 shows the confusion matrix

for the initial training set, a metric for the accuracy of the model, based on

the validation part of the training data. Elements on the diagonal from top

left to bottom right indicate images that are correctly detected by the model.

Elements off the diagonal are mispredictions.

In total, 3,967 images are detected to contain as mine as depicted in figure

3. As anticipated, the small-scale mines form different clusters either in bulks

or following rivers. Most detected mines lie in the Ashanti region, with some

clusters also being in the Central, Eastern and Western regions. These are also

the main large-scale mining areas.
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Figure 3: Overview of detected mines in Ghana

Notes: Detected artisanal mines in red. The red box shows the covered area by the machine

learning prediction. Source: Microsoft, author’s visualisation.

Figure 4: Confusion matrix for validation set

Source: Microsoft
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3.2 Socio-economic and environmental data

In addition to the ASM data, two different main data sources are used to es-

timate effects of ASM on economic and environmental outcomes. The Ghana

Living Standards Survey (GLSS) provides data on economic development. To

represent environmental effects I use forest cover loss data from Hansen et al.

(2013). These data sources are described in more detail below.

The regionally representative Ghana Living Standards Survey (GLSS), pro-

duced by the Ghana Statistical Service (GSS), provides three waves that are

suitable for this analysis: GLSS 4 (1998/99), GLSS 5 (2005/06) and GLSS

6 (2012/13). Together they sum to a total of 29,459 households and 124,170

individuals. The clusters in GLSS are drawn randomly within the ten regions

of Ghana for each survey year. This means that the clusters do not neces-

sarily overlap between survey years but only provide a repeated cross-section.

The GLSS provides a rich set of questions at the individual, household and

community level (one cluster can have multiple communities). Amongst these

are detailed questions on types of income and expenditure, assets, employ-

ment, education and health. Price levels at the cluster level allow for a precise

comparison of living standards between households in different regions. In

addition, the community questionnaire of GLSS provides information on each

community’s major economic activities, infrastructure (roads, hospitals, elec-

tricity, piped water etc.), migration and average wages.

Table 1 shows the number of individual-level observations for each GLSS wave

and region covered in the image detection introduced in the previous section.

The total number of observations in this table is lower than outlined in the

previous paragraph for two main reasons. First, the area covered by the satel-

lite image predictions only spans six out of Ghana’s ten regions. Second, GPS

coordinates are not available for all GLLS observations, in particular not for

GLSS 6 (2012/13).3 Figure 5 shows the combined data from GLSS and the

machine learning predictions.

3Unfortunately, most GPS coordinates for Ghana’s Central region, which contains many
small- and large-scale mines, are missing.
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4 5 6 Total

Ashanti 4865 6529 4874 16268

Brong Ahafo 1871 2729 5125 9725

Central 585 726 0 1311

Eastern 3398 3210 6155 12763

Greater Accra 490 1118 1137 2745

Western 1114 963 2012 4089

Total 12323 15275 19303 46901

Table 1: Number of individual observations per region and GLSS wave

Source: Ghana Statistical Service (1998), Ghana Statistical Service (2008), Ghana Statistical

Service (2012).

Figure 5: Small-scale mines and household location

Source: author’s visualisation of Ghana Statistical Service (2012), Microsoft.

To measure environmental effects of ASM, I use data on forest cover loss (FCL)

from Hansen et al. (2013). The FCL data shows areas where canopy cover

above 5 metres height was lost between 2001 and 2016 at a resolution of 30

by 30 metres. As data on other environmental outcomes such as soil and

water quality is not available at this scale for Ghana, the FCL data might be

a suitable proxy for at least this specific form of environmental degradation.

FCL has been used in similar applications to show the connection between

political incentives and deforestation (Burgess et al., 2012) and to identify

small-scale mining in Colombia (Saavedra and Romero, 2017).
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3.3 Other sources

In addition to the machine learning based data introduced in section 3.1,

other sources on small- and large-scale mining are used in this analysis. For

small-scale mining, data on official licenses issued between 1992 and 2017 from

Ghana’s Minerals Commission Small Scale Mining database is applied.4 For

each registered ASM operation the database contains name, location (given by

the nearest village/town plus district and post address of the company), issue

and expiry date as well as size in hectares. Note that the issue and expiry

date is only provided for licenses that expired before April 25th 2017, the date

the data was released to me. Licenses are granted for five years. Therefore,

Figure 6: Area of small-scale mining licenses by year issued in ha

Source: Authors calculation based on data from the Ghanaian Minerals Commission Small

Scale Mining Database, April 25th, 2017. This graph combines the data sets “Expired

licenses” (incl. year issued, year expired) and “Valid licenses” (year issued, expired not

available). For the valid licenses the year issued is assigned uniformly between 2012 and

2017.

the licenses currently valid, issued between the years 2012 to 2017, cannot be

dated precisely. To get some idea about the magnitude of how many licenses

4Official data on SSM licenses is available from 1992 onwards, following the legalisation
of this industry. The legalisation of SSM was part of the Minerals and Mining Law 1986
(PNDCL 153) and further implemented in Mercury Law (PNDCL 217), Small-Scale Gold
Mining Law (PNDCL 218), and Precious Minerals and Marketing Law (PNDCL 219) in
1989, see Hilson and Potter (2005).
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were issued from 2012 onwards and how much area they covered, I assume

that the year of issuance is distributed uniformly between 2012 and 2017. The

resulting development of area covered by official ASM operations is shown in

figure 6. This data can be geo-located at the district level and can thus be

used to distinguish effects between legal (this data) and illegal (satellite image

based data) ASM.

To account for large-scale gold mining, combined data on the GPS location and

annual production of these mines is obtained for years between 1992 and 2013

from Aragón and Rud (2016) and GHEITI (2017). The validity of the GPS

location provided in these sources is double-checked by satellite-imaged based

observation and information from the respective mining company websites.

4 Empirical Analysis

This section presents the empirical analysis of the effect of artisanal mining on

socio-economic and environmental outcomes.

4.1 Descriptive Statistics

The geographic distribution between small-scale mining, large-scale mining

and per-capita expenditure, divided by quintiles, is depicted in figure 7.5 It

shows that large industrial mines and small artisanal mines often coincide.

More specifically, large mines almost always have some amount of small mines

nearby, but not necessarily vice versa (see for example Eastern and Western

region). At first glance, per-capita expenditure in Ghanaian cedis (GHC) ap-

pears higher in districts with mining activity. It is not clear however, whether

this is due to small- or large-scale mining, or other omitted factors.

5The same figure is presented for income in the appendix (see figure A.2).
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Figure 7: Small- and large-scale mining and expenditure in Ghana

Source: Author’s visualisation based on data from Ghana Statistical Service (2012), Mi-

crosoft, Aragón and Rud (2016), GHEITI (2015).

To get a more nuanced view on the differences between areas with and with-

out ASM, table 2 presents summary statistics for the main variables for the

GLSS survey year 2012/13. I define an ASM area as the 10 kilometre radius

around household location with at least 4 detected small-scale mines, which

corresponds to the 90th percentile of the overall ASM distribution. The table

presents the figures only for the sample area, so only the Southern regions and

households with full observations are included. By construction the number

of ASM sites is much higher in ASM areas. As predicted, the production of

nearby industrial large-scale gold mines is also significantly higher in ASM

areas. On average 1.4 tonnes of gold are produced in areas with at least 4

small-scale mines and 0.3 tonnes in areas with less than 4 small-scale mines.

More importantly still, log expenditure is 1.7 percent higher ASM areas, while

income is not significantly different. Many other variables point to higher

economic development in areas with a lot of small-scale mines: Less house-

holds are engaged in agriculture, education and literacy are higher and more

households have electricity in ASM- vs. non-ASM areas.
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Table 2: Summary statistics on main variables by ASM frequency in 2012/13

(1) (2) (3)

ASM Non-ASM Diff. s.e.

area area

Number ASM sites 39.56 0.61 38.95∗∗∗ (1.20)

within 10 km

Large-scale gold prod. 1.40 0.34 1.07∗∗∗ (0.08)

within 10 km

Ln real income 7.31 7.27 0.04 (0.02)

per-capita

Ln real consumption 7.28 7.16 0.13∗∗∗ (0.01)

per-capita

Share male 0.48 0.48 0.00 (0.01)

Share HH head 0.49 0.60 -0.11∗∗∗ (0.01)

in agriculture

Age 32.63 32.58 0.05 (0.36)

Educational attainment 2.40 2.09 0.31∗∗∗ (0.03)

on scale 1-5

Share literate 0.63 0.56 0.08∗∗∗ (0.01)

Share urban 0.42 0.40 0.02 (0.01)

Share with 0.77 0.58 0.18∗∗∗ (0.01)

electricity

Cluster population 1720.18 1862.35 -142.17 (107.46)

Price index 0.98 0.99 -0.01∗∗∗ (0.00)

N 3289 9915 13204

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Based on GLSS data from 2012/13. ASM area is defined as an area with at least four

detected artisanal mines within 10 kilometres of the household, which corresponds

to the 90th percentile of the ASM distribution.
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4.2 Effects of ASM on socio-economic outcomes

The previous section shows how mining areas differ from non-mining areas.

At this stage it is unclear however whether this is due to small-scale mining,

large-scale mining, or other factors. This will be investigated here. The main

shortcoming of the machine learning based ASM data is that satellite images,

which are required to detect small-scale mines, are only available for 2014. I

will therefore start by analysing the cross-section of the ASM data in relation

to household survey data from 2012/13 in section 4.2.1. Using the fact that

ASM did not become a major industry in Ghana before 2006 (see section 2),

I assign zero ASM locations for the years until 2006. This allows me to add a

time dimension, the results of which are shown in section 4.2.2 below.

4.2.1 Cross-sectional results

To estimate the effect of small-scale gold mines on economic outcomes I start

from cross-sectional analysis, that makes use of the last GLSS survey wave 6

from 2012/13 and the ASM data from 2014. The estimation is done by using

OLS of the form:

Outcomei = β0 + β1ASMi + β2LSMi + β3’Xi + γd + ǫi, (1)

where Outcomei is, depending on the specification used, either the natural log-

arithm of individual i’s household income or expenditure per-capita. ASMi is

the treatment variable representing the number of artisanal small-scale mines

within 10 kilometres of the household cluster. Xi is a set of control variables

at the individual level, such as gender, age, educational attainment, religion,

literacy and migration status. LSMi is the production of large-scale gold

mines in tonnes within 10 kilometres of the household cluster. γd accounts for

district-level fixed effects. The error term ǫi is clustered at the GLSS cluster

level.

The results for this cross-sectional specification are displayed in table 3. The

number of detected artisanal mines within 10 kilometres of the household loca-

tion is positive and significant at the one percent confidence level for real per-

capita income. One additional small-scale mine in the proximity of a household

increases real per-capita income by 0.2 percent, but has no effect on expendi-

ture. At the same time, the production of large mines within 10 kilometres

does not significantly affect economic well-being. This supports the enclave

theory of large-scale mining, which states that these mines operate indepen-
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dently from local communities, by hiring very little local labour.

Over which distance does ASM affect households’ economic well-being? Figure

8 shows the results of the above specification for different household radiuses

between 5 and 50 km. The trend is clear: the closer ASM mines are to the

household location, the stronger is their effect on income. The magnitude

ranges from 5 percent for the 5 kilometre radius to under 1 percent for the

50 kilometre radius. At the same time, narrower treatment areas exhibit big-

ger confidence intervals, which points to sizeable unobserved heterogeneity

between different ASM areas. This will be further explored in section 4.4.

Figure 8: Effect of ASM on log real per-capita income, by distance

Source: Author’s calculation, based on Ghana Statistical Service (2012), Microsoft.
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Table 3: Effect of artisanal mining on income and expenditure

(1) (2)
LN real income LN real expenditure

per-capita per-capita

Number of ASM sites 0.0021∗∗ 0.0002
within 10 km (0.0009) (0.0005)

LSM gold production 0.0122∗ −0.0097∗

within 10 km (0.0073) (0.0058)

Male 0.0652∗∗∗ 0.0192∗

(0.0191) (0.0101)

Age 0.0199∗∗∗ 0.0102∗∗∗

(0.0024) (0.0013)

Age squared −0.0002∗∗∗ −0.0001∗∗∗

(0.0000) (0.0000)

Never in school 0.0000 0.0000
(.) (.)

Less than primary 0.1150∗∗∗ 0.0756∗∗∗

education (0.0388) (0.0232)

Completed primary −0.0432 0.0900
but less than MSLC (0.1441) (0.0707)

MSLC or vocational 0.1705∗∗∗ 0.1527∗∗∗

(0.0405) (0.0240)

Secondary or higher 0.4303∗∗∗ 0.4335∗∗∗

(0.0587) (0.0345)

Literacy 0.1732∗∗∗ 0.1069∗∗∗

(0.0323) (0.0174)

Born here −0.0705∗∗ −0.0720∗∗∗

(0.0338) (0.0194)

Urban 0.2879∗∗∗ 0.3197∗∗∗

(0.0592) (0.0384)

Constant 6.0599∗∗∗ 7.0106∗∗∗

(0.3386) (0.1714)

Observations 13204 13204
R2 0.142 0.334

Clustered standard errors at GLSS cluster level in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Both regressions include district fixed effects and control for religion.
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4.2.2 Repeated cross-sectional results

The main drawback of the cross-sectional specification is that it does not pro-

vide time variation. To overcome this, I define the treatment variable of de-

tected small-scale mines as zero for all observations in the first two survey

waves of GLSS (1998/99 and 2005/06). This is motivated by the evidence

presented in section 2. Official ASM production volumes, the number of ASM

licenses, gold price and evidence from other articles (Crawford et al. (2015),

Aragón and Rud (2016)) all point to very little artisanal gold mining activity

until 2006. To check whether this is robust, I will only assign the values from

1998/99 as zero and omit observations from 2005/06.

With the updated ASM treatment variable I then run OLS with year and

district fixed effects of the form:

Outcomeidt = β0 + β1ASMidt + β2LSMidt + β3’Xidt + γd + δt + ǫidt, (2)

Where Outcomeidt is now the logarithm of per-capita income or expenditure

of individual i in district d in year t. ASMidt indicates the number of detected

small-scale mines within 10 kilometres of the household location in 2014. For

the first two survey waves (1998/99 and 2005/06), ASMidt is set to zero for all

observations. LSMidt is large-scale mine production within 10 kilometres of

the household. Xi is a set of individual controls as in the previous specification.

γd and δt are district and time fixed effects. The error term ǫidt is clustered at

the GLSS cluster level.

The results of the above specification are presented in table 4. The coefficient

on ASM is similar to the one estimated in the cross-sectional part, with one

additional artisanal small-scale mine adding 0.16 percent to real per-capita

income. The effect on expenditure is again insignificant. Further, large-scale

gold mining does not have an effect on either of the two outcome variables.

These results are in line with the cross-sectional evidence presented in the

previous section.
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Table 4: Effect of artisanal mining on income and expenditure with time effects

(1) (2)
LN real income LN real expenditure

per-capita per-capita

Number of ASM sites 0.0016∗∗ 0.0007
within 10 km (0.0007) (0.0004)

LSM gold production 0.0076 0.0028
within 10 km (0.0049) (0.0037)

Male 0.0213∗ 0.0016
(0.0125) (0.0067)

Age 0.0110∗∗∗ 0.0068∗∗∗

(0.0015) (0.0008)

Age squared −0.0001∗∗∗ −0.0000∗∗∗

(0.0000) (0.0000)

Never in school 0.0000 0.0000
(.) (.)

Less than primary 0.0891∗∗∗ 0.0741∗∗∗

education (0.0264) (0.0157)

Completed primary 0.1351∗∗∗ 0.1198∗∗∗

but less than MSLC (0.0372) (0.0206)

MSLC or vocational 0.1839∗∗∗ 0.1644∗∗∗

education (0.0297) (0.0170)

Secondary or higher 0.5329∗∗∗ 0.4578∗∗∗

(0.0419) (0.0250)

Literacy 0.1271∗∗∗ 0.0975∗∗∗

(0.0214) (0.0120)

Born here −0.0652∗∗∗ −0.0746∗∗∗

(0.0229) (0.0132)

Urban 0.1836∗∗∗ 0.3120∗∗∗

(0.0459) (0.0310)

Constant 4.9278∗∗∗ 6.0127∗∗∗

(0.2135) (0.1132)

Observations 30518 30518
R2 0.381 0.440

Standard errors in parentheses, clustered at GLSS cluster level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Both specifications include district and year fixed effects and control for religion.
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4.3 Effects of ASM on forest cover loss

While income is higher in areas with small-scale mining, the environmental

effects have not been taken into account yet. Here I test whether ASM affects

forest cover loss, a measure for deforestation. Table 5 reports the differences

between ASM- and non-ASM areas from GLSS survey 6 (2012/13) in terms of

forest cover loss. The units are in percentage points. Overall, deforestation is

significantly higher in ASM- than non-ASM areas. In 2012/13 the difference

amounts to half a percentage point, which equals nearly 42 percent (compare

columns 1 and 2). Particularly high levels of forest cover loss are reported for

the years 2013, 2014 and 2015.

Table 5: Forest cover loss by year and ASM-/ non-ASM area

(1) (2) (3)

ASM area Non-ASM area Diff. s.e.
Number ASM 39.56 0.61 38.95∗∗∗ (1.20)
LSM production 1.40 0.34 1.07∗∗∗ (0.08)
Forest loss 2012/13 1.66 1.17 0.48∗∗∗ (0.02)
Forest loss 2012-15 4.29 2.73 1.56∗∗∗ (0.04)
Forest loss 2001 0.48 0.27 0.21∗∗∗ (0.01)
Forest loss 2002 0.23 0.23 0.00 (0.01)
Forest loss 2003 0.59 0.32 0.27∗∗∗ (0.01)
Forest loss 2004 0.41 0.48 -0.07∗∗∗ (0.01)
Forest loss 2005 0.48 0.27 0.21∗∗∗ (0.01)
Forest loss 2006 0.23 0.23 0.00 (0.01)
Forest loss 2007 0.59 0.32 0.27∗∗∗ (0.01)
Forest loss 2008 0.41 0.48 -0.07∗∗∗ (0.01)
Forest loss 2009 0.46 0.22 0.24∗∗∗ (0.00)
Forest loss 2010 0.25 0.21 0.04∗∗∗ (0.00)
Forest loss 2011 0.46 0.33 0.13∗∗∗ (0.01)
Forest loss 2012 0.34 0.27 0.07∗∗∗ (0.01)
Forest loss 2013 1.32 0.91 0.41∗∗∗ (0.02)
Forest loss 2014 1.87 1.10 0.76∗∗∗ (0.02)
Forest loss 2015 0.76 0.45 0.31∗∗∗ (0.01)
N 3289 9915 13204

Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Source: Hansen et al. (2013), Ghana Statistical Service (2012).

Only observations from GLSS 6 - 2012/13 are used.

To check whether the forest cover loss is driven by ASM or LSM I run a short

regression of the logarithm of forest cover loss during the GLSS survey years
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(column 1) on the number of detected ASM sites and the gold production of

LSM within 10 kilometres of the household location. The results are shown in

table 6. The effect of ASM is economically small at 0.07 percent, but statisti-

cally significant. Using forest cover loss during survey years and the following

two years (column 2) as the dependent variable, the effect of ASM increases

to 0.2 percent for each additional small-scale mine within 10 kilometres of the

household location.

Table 6: Effect of artisanal mining on income and expenditure, incl. time
effects

(1) (2)
Forest cover loss Forest cover loss during

during survey years survey years + two years

Number of ASM sites 0.0007∗∗∗ 0.0021∗∗∗

(0.0003) (0.0002)

LSM gold production 0.0014 0.0025
(0.0015) (0.0020)

30,518 30,518
R2 0.734 0.765

Standard errors in parentheses, clustered at GLSS cluster level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Both specifications include district and year fixed effects.

4.4 Channels and Robustness Checks

The results so far suggest that artisanal and small-scale mining is associated

with lower income and increased forest cover loss. In this section, I test provide

alternative specifications, distinguish between legal and illegal ASM and dissect

the income effects further.

First, I test whether part of the heterogeneity between different treatment

areas can be explained by legal versus illegal artisanal mining. For this, I

use official ASM license data from Ghana’s Minerals Commission Small Scale

Mining database, which includes years 1992-2017. Because the exact GPS

location for these licensed operations is not available, I match them with the

household data by district. This is not ideal, since districts in Ghana have

different sizes, meaning that some households can be far away from licensed

ASM sites within a district. This limitation in mind, I re-estimate the previous

results in table 7. Licensed ASM operations do not have a separate effect on
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income or expenditure. This may be due to the identification at the district

level, or it can simply reflect the small importance of licensed relative to illegal

ASM.

Table 7: Illegal, legal ASM and LSM with time effects

(1) (2) (3) (4)
Income Income Expenditure Expenditure

Number ASM 0.0016∗∗ 0.0022∗∗∗ 0.0007 0.0006
(0.0007) (0.0007) (0.0004) (0.0005)

LSM production 0.0076 0.0080 0.0028 0.0028
(0.0049) (0.0049) (0.0037) (0.0037)

Licensed ASM -0.0049 0.0006
(0.0031) (0.0019)

Constant 4.9278∗∗∗ 4.9026∗∗∗ 6.0127∗∗∗ 6.0158∗∗∗

(0.2135) (0.2140) (0.1132) (0.1143)

Observations 30518 30518 30518 30518
R2 0.381 0.382 0.440 0.440

Standard errors in parentheses, clustered at GLSS cluster level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

All specifications include district and year fixed effects and control for individual

and household characteristics. Only years 1998/99 and 2012/13 are used here.

The important identifying assumption for the repeated cross-sectional results

in section 4.2.2 is that small-scale mining is negligible for the years 1998/99

and 2005/06 and can thus be set to zero for the according survey observations.

Table 8 shows how the effect of illegal ASM, official ASM and large-scale gold

mining differs when excluding observations from years the 2005/06. The effect

of illegal ASM on expenditure is still not significant. Income however remains

significant, even if only at 10 percent without and 5 percent with controlling

for legal ASM. The according coefficient is of similar magnitude as before,

one additional ASM site leading to 1.4 or 1.6 percent more per-capita income.

Again, large-scale mining and licensed artisanal mining have no significant

effect on income.

In a next step, I want to test whether the effect on income depends on the

source of income. Specifically, I am interested in the difference between agri-

cultural and non-agricultural incomes. With 49 percent the percentage of

individuals engaged in agriculture is significantly lower in ASM areas, than

the 60 percent in non-ASM areas, as the summary table 2 shows. This is

confirmed in a regression context, see table A.6 in the appendix. There are
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Table 8: Illegal, legal ASM and LSM with time effects, excluding 2005/06

(1) (2) (3) (4)
Income Income Expenditure Expenditure

Number ASM 0.0014∗ 0.0016∗∗ 0.0001 0.0001
(0.0007) (0.0007) (0.0004) (0.0005)

LSM production 0.0032 0.0037 0.0012 0.0013
(0.0059) (0.0060) (0.0042) (0.0042)

Licensed ASM -0.0039 -0.0005
(0.0038) (0.0020)

Constant 4.9895∗∗∗ 4.9544∗∗∗ 6.0996∗∗∗ 6.0955∗∗∗

(0.3138) (0.3191) (0.1618) (0.1637)

Observations 19069 19069 19069 19069
R2 0.379 0.379 0.460 0.460

Standard errors in parentheses, clustered at GLSS cluster level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

All specifications include district and year fixed effects and control for individual

and household characteristics. Only years 1998/99 and 2012/13 are used here.

various reasons why agricultural income may be lower in mining areas. First,

ASM and related industries can provide higher-paying jobs than, often subsis-

tence, agriculture. On the other hand, negative environmental externalities,

for example through deforestation or soil and water pollution, may decrease

agricultural productivity and therefore also profitability. Finally, if these ASM

areas are more developed overall, then the share of agriculture is expected to

be lower.

Table 9 shows the results of the main specification with time effects for differ-

ent income variables, measured as adult equivalents. Taking adult equivalents

instead of per-capita measures can produce more representative income and

expenditure figures if households have many children. Columns (1) and (2)

repeat the main specification with the adult equivalent numbers. The effect of

ASM on income is still 0.16 percent and significant. Unlike before consumption

is also affected by ASM now. Columns (3) to (5) show income separated by (3)

any work income (farming and non-farming), (4) only agricultural income and

(5) only non-agricultural work income. The effect on any work income is of

the same magnitude as the total income effect. Agricultural income however is

not significantly affected by artisanal mining. Thus only the effect on income

from non-agricultural sources is significant (column 6).

These findings shows that while the share of individuals in agriculture is lower
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Table 9: Artisanal mining, adult-equivalent measures and income components

(1) (2) (3) (4) (5)
Income Expend. Income Income Income

any work agric. non-agric.

Number ASM 0.0016∗∗ 0.0016∗∗∗ 0.0017∗∗ 0.0004 0.0014∗

(0.0007) (0.0005) (0.0007) (0.0013) (0.0008)

LSM production 0.0074 0.0055 0.0074 -0.0048 0.0100∗∗

(0.0048) (0.0047) (0.0058) (0.0085) (0.0043)

Male -0.0364∗∗∗ -0.0009 0.0082 0.0827∗∗∗ -0.0312∗

(0.0124) (0.0112) (0.0135) (0.0191) (0.0167)

Age 0.0101∗∗∗ 0.0182∗∗∗ 0.0178∗∗∗ 0.0122∗∗∗ 0.0210∗∗∗

(0.0015) (0.0013) (0.0017) (0.0021) (0.0022)

Age squared -0.0001∗∗∗ -0.0001∗∗∗ -0.0002∗∗∗ -0.0001∗∗∗ -0.0002∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Never in school 0.0000 0.0000 0.0000 0.0000 0.0000
(.) (.) (.) (.) (.)

Less than 0.0999∗∗∗ 0.1107∗∗∗ 0.1077∗∗∗ 0.0242 0.1176∗∗∗

primary (0.0262) (0.0249) (0.0280) (0.0374) (0.0401)

Primary 0.1366∗∗∗ 0.1910∗∗∗ 0.1272∗∗∗ -0.0194 0.1533∗∗∗

only (0.0369) (0.0330) (0.0399) (0.0548) (0.0539)

Vocational 0.1886∗∗∗ 0.2855∗∗∗ 0.1708∗∗∗ -0.0336 0.2150∗∗∗

education (0.0297) (0.0270) (0.0311) (0.0435) (0.0425)

Secondary or 0.5231∗∗∗ 0.6427∗∗∗ 0.5242∗∗∗ -0.1985∗∗∗ 0.6168∗∗∗

higher (0.0417) (0.0384) (0.0445) (0.0716) (0.0556)

Literacy 0.1106∗∗∗ 0.0023 0.1111∗∗∗ -0.0196 0.1973∗∗∗

(0.0213) (0.0178) (0.0230) (0.0343) (0.0288)

Born here -0.0649∗∗∗ -0.1057∗∗∗ -0.0773∗∗∗ 0.0343 -0.0967∗∗∗

(0.0228) (0.0203) (0.0242) (0.0380) (0.0293)

Urban 0.1712∗∗∗ 0.4055∗∗∗ 0.1831∗∗∗ -0.6799∗∗∗ 0.5168∗∗∗

(0.0456) (0.0406) (0.0508) (0.0924) (0.0579)

Constant 5.1995∗∗∗ 4.2234∗∗∗ 4.9393∗∗∗ 4.5975∗∗∗ 4.3913∗∗∗

(0.2094) (0.1457) (0.2575) (0.3476) (0.1889)

N 30518 30518 29792 20312 22915
R2 0.383 0.284 0.330 0.150 0.384

Standard errors in parentheses, clustered at GLSS cluster level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

All specifications include district and year fixed effects and control for individual

and household characteristics.
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in ASM areas, the according agricultural income is unchanged. This is there-

fore evidence against the presumed negative externalities of ASM on agricul-

tural productivity. The small income gain that does arise from ASM is earned

by non-agricultural activities, which supports the hypothesis of positive exter-

nalities, possibly through employment generation or wage and business revenue

increases. The precises channels of this effect still have to be investigated.

5 Conclusion

This article is among the first to provide empirical evidence on the economic

and environmental effects of artisanal small-scale mining. Using a novel data

set on the exact GPS location of small-scale mines in connection with house-

hold survey data, I estimate higher per-capita income for areas with high ASM

activity. Other indicators of economic development point in the same direc-

tion: more households have access to electricity, more people are literate and

fewer individuals work in agriculture. However, there is also some evidence

for environmental damages in the form of forest cover loss. Better data on the

intensive margin of ASM, for example in the form of production volumes or

number of workers, is needed to establish the precise channels through which

artisanal mining affects economic outcomes. Nonetheless, the empirical evi-

dence presented here allows for a more nuanced view on the effects of artisanal

and small-scale mining in an otherwise data-sparse environment.
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A Appendix

Figure A.1: Detected mines by threshold
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4 5 6 Total

Ashanti 4865 6529 4874 16268

Brong Ahafo 1818 2522 5014 9354

Central 517 658 0 1175

Eastern 3300 3210 6079 12589

Greater Accra 91 363 726 1180

Western 1021 913 1954 3888

Total 11612 14195 18647 44454

Table A.1: Number of individual observations per region and GLSS year, ex-
cluding observations 5 km from coverage border

Source: Ghana Statistical Service (1998), Ghana Statistical Service (2008), Ghana Statistical

Service (2012).

4 5 6 Total

Ashanti 4865 6529 4874 16268

Brong Ahafo 1752 2471 4827 9050

Central 452 466 0 918

Eastern 3117 3184 5956 12257

Greater Accra 91 131 146 368

Western 931 859 1635 3425

Total 11208 13640 17438 42286

Table A.2: Number of individual observations per region and GLSS year, ex-
cluding observations 10 km from coverage border

Source: Ghana Statistical Service (1998), Ghana Statistical Service (2008), Ghana Statistical

Service (2012).
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4 5 6 Total

Ashanti 4865 6529 4874 16268

Brong Ahafo 1693 2218 3939 7850

Central 262 194 0 456

Eastern 2759 2831 5055 10645

Western 726 630 1004 2360

Total 10305 12402 14872 37579

Table A.3: Number of individual observations per region and GLSS year, ex-
cluding observations 20 km from coverage border

Source: Ghana Statistical Service (1998), Ghana Statistical Service (2008), Ghana Statistical

Service (2012).

Figure A.2: Small- and large-scale mining and income in Ghana

Source: Ghana Statistical Service (2012), Microsoft, Aragón and Rud (2016), GHEITI

(2015).
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Table A.4: Effect of artisanal mining on income and expenditure, excluding
observations 5 km from coverage border

(1) (2)
LN real income pc LN real expenditure pc

c99p 10km 0.0021∗∗ 0.0002
(0.0009) (0.0005)

cumul production 10km 0.0121∗ −0.0096∗

(0.0073) (0.0058)

male 0.0683∗∗∗ 0.0172∗

(0.0192) (0.0103)

age 0.0201∗∗∗ 0.0103∗∗∗

(0.0025) (0.0014)

age sq −0.0002∗∗∗ −0.0001∗∗∗

(0.0000) (0.0000)

0.educ attainment 0.0000 0.0000
(.) (.)

1.educ attainment 0.1297∗∗∗ 0.0789∗∗∗

(0.0392) (0.0239)

2.educ attainment −0.0833 0.0674
(0.1544) (0.0716)

3.educ attainment 0.1906∗∗∗ 0.1588∗∗∗

(0.0405) (0.0247)

4.educ attainment 0.4415∗∗∗ 0.4384∗∗∗

(0.0593) (0.0355)

1.religion 0.0000 0.0000
(.) (.)

2.religion 0.0445 −0.0314
(0.0647) (0.0378)

3.religion −0.0917∗ −0.0566
(0.0534) (0.0375)

literacy any 0.1687∗∗∗ 0.1069∗∗∗

(0.0330) (0.0179)

born here −0.0665∗ −0.0706∗∗∗

(0.0347) (0.0200)

urban 0.2851∗∗∗ 0.3166∗∗∗

(0.0608) (0.0395)

cons 6.0373∗∗∗ 7.0089∗∗∗

(0.3378) (0.1714)

N 12694 12694
R2 0.139 0.315

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.5: Effect of artisanal mining on income and expenditure, excluding
observations 10 km from coverage border

(1) (2)
ln rincpc ln rexpenditurepc

c99p 10km 0.0021∗∗ 0.0003
(0.0009) (0.0005)

cumul production 10km 0.0121 −0.0097∗

(0.0074) (0.0058)

male 0.0752∗∗∗ 0.0171
(0.0204) (0.0108)

age 0.0194∗∗∗ 0.0102∗∗∗

(0.0026) (0.0014)

age sq −0.0002∗∗∗ −0.0001∗∗∗

(0.0000) (0.0000)

0.educ attainment 0.0000 0.0000
(.) (.)

1.educ attainment 0.1283∗∗∗ 0.0805∗∗∗

(0.0405) (0.0251)

2.educ attainment −0.0778 0.1086
(0.1575) (0.0674)

3.educ attainment 0.1821∗∗∗ 0.1543∗∗∗

(0.0422) (0.0259)

4.educ attainment 0.4149∗∗∗ 0.4213∗∗∗

(0.0629) (0.0349)

1.religion 0.0000 0.0000
(.) (.)

2.religion 0.0242 −0.0367
(0.0690) (0.0390)

3.religion −0.0925∗ −0.0709∗

(0.0560) (0.0379)

literacy any 0.1719∗∗∗ 0.1121∗∗∗

(0.0344) (0.0186)

born here −0.0837∗∗ −0.0715∗∗∗

(0.0360) (0.0206)

urban 0.2905∗∗∗ 0.3144∗∗∗

(0.0632) (0.0415)

cons 6.0633∗∗∗ 7.0102∗∗∗

(0.3384) (0.1720)

N 11759 11759
R2 0.138 0.305

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.6: Effect of artisanal and industrial mining on industry shares

Agriculture Mining

Head Couple HH Head Couple HH

ASM 0.9969** 0.9961*** 0.9958*** 1.0067*** 1.0065*** 1.0059***

(0.0013) (0.0013) (0.0013) (0.0020) (0.0020) (0.0020)

LSM 0.9771** 0.9681*** 0.9663*** 1.0587*** 1.0627*** 1.0619***

(0.0103) (0.0096) (0.0112) (0.0173) (0.0167) (0.0158)

N 28914 29553 30298 16173 16671 18767

Pseudo R2 0.327 0.355 0.385 0.271 0.274 0.247

Results, shown as exponentiated coefficients, from logit regression of household head / head

or spouse / any household member being in agriculture / mining on ASM and LSM vari-

ables, controlling for individual, household characteristics, district-level and year fixed ef-

fects. Standard errors are clustered at the GLSS cluster level. Source: Ghana Statistical

Service (1998), Ghana Statistical Service (2008), Ghana Statistical Service (2012), Microsoft,

Aragón and Rud (2016), GHEITI (2015). * p < 0.10, ** p < 0.05, *** p < 0.01.
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